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Liquid crystal phase diagram of the Gay± Berne ¯ uid by density

functional theory

by VALERIY V. GINZBURG,* MATTHEW A. GLASER
and NOEL A. CLARK

Department of Physics, University of Colorado, Boulder CO 80309-0390, U.S.A.

(Received 12 February 1997; accepted 12 March 1997 )

We calculate the liquid crystal phase diagram for a model ¯ uid with Gay± Berne interparticle
potential using the Tarazona smoothed-density approximation of density functional theory.
Vapour, liquid, nematic and smectic A phases are considered. For length to breadth ratio
k =3 and energy anisotropy k ¾ =5, comparison with the simulation data of de Miguel et al.
shows reasonable agreement.

1. Introduction Combined with the weighted-density approximation
The problem of prediction of phase behaviour of (which suggests that in a non-uniform phase like a

liquid crystals based on information about molecular smectic or a crystal, local steric energy depends not on
shape and intermolecular interactions remains one of the local mass density, but on a density averaged over
the most fundamental in liquid crystal physics. some region according to some speci® c rules Ð for more
Traditional Onsager [1] and Maier± Saupe [2] theories details see Tarazona [8]), this approach resulted in
described the nematic± isotropic transition qualitatively; qualitatively (and, in some cases, quantitatively) correct
de Gennes [3] and McMillan [4] proposed phenomeno- phase diagrams for hard ellipsoids [9], hard sphero-
logical theories for the nematic± smectic A transition as cylinders [10± 12] and oblique hard spherocylinders
well. Although correctly describing the physics of both [11].
transitions, these theories do not rely speci® cally on To study phase diagrams for thermotropic liquid
information about intermolecular interactions and thus crystals, it was necessary to select a reasonable inter-
require additional assumptions and parameters to particle potential, i.e. one having appropriate symmetry
describe real materials ( in de Gennes± McMillan theory, which is, at the same time, computationally inexpensive.
for example, smectic period must be introduced by hand Mederos and Sullivan [13] considered a general potential
rather than following from molecular information). Thus, consisting of isotropic, dipolar and quadrupolar parts,
for practical purposes, there exists a need for a universal and calculated its phase diagram using DFT. However,
molecular theory that can predict a phase diagram for lack of computational data on the Mederos± Sullivan
a given material. The density functional theory (DFT)

potential makes it di� cult to compare this result with
approach has so far been the most successful in this

either experimental or computational data. Moreover,
direction.

the structure of their potential and density functionalApplication of DFT to liquid crystals has been mainly
seems to be applicable only for rather small elongations,concentrated on lyotropic or hard-particle ¯ uids [5].
and it is unclear whether this approach can be extendedIt was based upon the quasi-exact knowledge of the
to longer particles.equation of state for a hard-sphere ¯ uid (Carnahan±

In recent years, the most studied potential describingStarling equation) [6], and the correspondence between
interactions between anisotropic particles has beenthe system of parallel hard ellipsoids and that of hard
the Gay± Berne (GB) potential [14]. Gay and Bernespheres (one can be converted into the other by an a� ne
proposed a function that described a van der WaalstransformationÐ an observation made by Frenkel [7]).
interaction energy between prolate or oblate uniaxialAny liquid crystalline ¯ uid is considered to be c̀lose’ to
ellipsoids of revolution. Both shape and energy aniso-an equivalent system of hard ellipsoids, and its free
tropy appear in the potential in a rather natural way,energy functional is derived from that of hard spheres.
thus allowing them to be varied at ease. Moreover, using
the Weeks, Chandler and Andersen (WCA) prescription
[15], one can easily separate the GB potential into a*Author for correspondence.
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228 V. V. Ginzburg et al.

repulsive (steric) part and an attractive part and study where
the relative role of both parts in phase formation.

The thermodynamics of Gay± Berne ¯ uids has been bFid= P d( 1 )c( 1 ) ln c(1 ), (2 )
investigated thoroughly through a number of computer
simulation studies (both Monte Carlo and molecular
dynamics). De Miguel et al. [16 ± 18] calculated a phase
diagram for speci® c values of shape and energy aniso- bFint= P d( 1 )c( 1 )Yhs (rÅ (r1 ) )

P d( 2 )c( 2 )M ( 1, 2 )

P d(r2 )r(r2 )M phe (r1 Õ r2 )
tropy to ® nd such phases as isotropic vapour, isotropic
liquid, nematic, smectic B and crystal. In another
simulation for a slightly di� erent parametrization of the
potential, Luckhurst et al. [19, 20] also found a smectic +

1

2 P d(1)d(2)c( 1 )c( 2 )DW att ( 1, 2 )geff ( 1, 2 ),
A phase. In addition, a simulation of a repulsive (WCA)
system of Gay± Berne ellipsoids was performed to show (3)
only isotropic and nematic phases (a crystal phase must

where the single particle distribution function c( 1 )exist at higher packing fractions, but the simulation
depends on both orientational and translational degreeswas not extended to this region), in agreement with
of freedom, and, in the arbitrary case of a system withFrenkel’s argument that hard ellipsoids do not form
a low symmetrysmectic phases. These data provide an excellent source

of information for any thermodynamic theory and make c( 1 ) =r(r1 ) f (r1 , n1 ) . (4 )
the GB ¯ uid an important test for molecular theories

The ® rst term of equation (3) describes repulsive hard-of liquid crystals. To date, several attempts have been
core steric interactions. This form of the steric energymade to describe the GB phase behaviour theoretically.
was ® rst proposed by Somoza and Tarazona [11] and isGinzburg et al. [21] analysed the behaviour of the
based on the hard-sphere equation of state ( incorporatednematic± isotropic transition in a GB system using
via the function Yhs ) , the similarity between the hard-the second virial approximation. Velasco et al. [22]
sphere system and the system of parallel hard ellipsoids,applied the density functional formalism to achieve a
and the weighted density approximation ( introducedquantitative agreement with simulation data for a
via the smoothed density pro® le rÅ (r) ) . The de® nitionsnematic± isotropic transition.
of functions Yhs , rÅ , M (1, 2 ), and M phe (r1 Õ r2 ) are as

In this article, we describe the application of a DFT
follows:

method, similar to that of Velasco et al. [22], to the
isotropic± nematic± smectic phase diagram of GB

Yhs (rÅ ) =
g ( 4 Õ 3g)

( 1 Õ g)2 , g=
prÅ s2

0sz

6
, (5 )¯ uids. We analyse the role of attractive interactions in

the formation of a smectic phase and compare the
results with computer simulation data. We also calcu- rÅ (r) = P ds w ( |s|; rÅ (r) )r (r+ Ss), (6 )
late, for the ® rst time, a temperature± pressure phase
diagram. where s0 is the breadth of the particle, sz is its length,

S is a diagonal matrix with elements s0 , s0 , sz (in the
coordinate system in which x, y, z coincide with the

2. Free energy density functional principal axes of the particle’s inertia tensor); the Mayer
In this section, we brie¯ y review density functional function M (1, 2) is a step function and is equal to Õ 1

theory and its application to liquid crystals. The only if the two particles overlap and 0 if they do not overlap;
complication that arises for liquid crystals compared M phe (r1 Õ r2 ) is a Mayer function for parallel hard
with atomic ¯ uids is that they may have both orienta- ellipsoids, which, obviously, depends only on the relative
tional and positional ordering. Thus, a particle is charac- positions of their centres of mass.
terized not only by the position of its centre of mass r, Equation (5) is a semi-empirical Carnahan± Starling
but also by a three-dimensional vector n describing its equation of state for hard spheres (HS) [23].
orientation. The single-particle distribution function Equation (6) is an integral equation for a smoothed
(SDF) must be a function of both r and n. density, with w ( |s|; rÅ (r) ) being a second-degree poly-

Within the DFT framework, the free energy is written nominal in rÅ (r) . The detailed description of function w

as a functional depending on the SDF. It consists of the and the ways to solve the integral equation (6) can be
ìdeal gas’ contribution and the ìnteraction’ contribution: found in ref. [8]; for a brief summary, see Appendix A.

The second term of equation (3) describes the attractive
intermolecular interactions, which, except for very lowbF =bFid+bFint , (1 )
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229DFT GB phase diagram

temperatures and/or very high densities, are considered 3. Intermolecular potential

The Gay± Berne intermolecular potential is one of theto be perturbations in the sense that, to the zeroth order
approximation, they do not modify the pair correlation most widely used in computer modelling of anisotropic

liquids. It is parametrized as follows:function. Thus, in equation (3), geff (1, 2) is calculated
using the Parsons approximation [24] for hard particles:

Ugb ( 1, 2 ) =4e( 1, 2 )G C s0

r12 +s0 Õ s ( 1, 2 )D12

geff( 1, 2 ) =ghs ( |r1 Õ r2 |/s(n1, n2 , rÃ 1 Õ rÃ 2 ) ; g) , (7 )

where ghs is a HS PCF (see, e.g. [25] ) described in detail
Õ C s0

r12+s0 Õ s ( 1, 2 )D6 H, (10)in Appendix B, and packing fraction g is given by
equation (5). The form of the attractive potential

where r12=|r1 Õ r2 |, and con® guration-dependentDW (1, 2) will be described in detail in the next section.
functions e (1, 2) and s (1, 2) are given by:We assume further that the orientational distribution

function depends only upon n, but not r, i.e. orienta-
s ( 1, 2 ) =s0G1 Õ

x

2C (rÃ 12 ¯n1+ rÃ 12 ¯n2 )2

1 +xn1 ¯ n2
tional and translational degrees of freedom are separated
(decoupling approximation). Although this approximation
is not accurate in describing interlayer ordering in smectics

+
(rÃ 12 ¯n1 Õ rÃ 12 ¯ n2 )2

1 Õ xn1 ¯ n2 D H, (11)(one can argue that between layers orientational order-
ing must be much weaker than within layers; see, for

e( 1, 2 ) =e0en1 (n1 , n2 , rÃ 12 ) , (12)example, ref. [26] ), the error in the free energy and
other thermodynamic properties due to this inaccuracy

e1 (n1 , n2 ) =[1 Õ x2 (n1 ¯n2 )2] Õ 1/2, (13)
should be insigni® cant, since most molecules are within
layers. For positionally disordered phases, such as

e2 (n1 , n2 , rÃ 12 ) =G 1 Õ
x ¾

2 C (rÃ 12 ¯n1+ rÃ 12 ¯n2 )2

1 +x ¾ n1 ¯ n2
nematic and isotropic, of course, only orientational
degrees of freedom remain.

Equations (2) to (7) constitute a complete de® nition
+

(rÃ 12 ¯n1 Õ rÃ 12¯n2 )2

1 Õ x ¾ n1 ¯n2 D H. (14)
of the free energy functional for all ordered and dis-
ordered phases. In order to analyse the phase behaviour

Parameters x and x ¾ are related to shape anisotropy kof the system, one can use a variational approach and
( length to breadth ratio) and energy anisotropy k ¾ (sideselect speci® c trial functions for the single-particle
by side energy to end to end energy ratio) as:density. For each phase (isotropic, nematic and smectic)

it is possible to minimize the free energy with respect to
x=

k2 Õ 1

k2+1
, (15)the corresponding order parameters (if any), and then

compare the free energies of all three phases to ® nd
the one that is thermodynamically stable. Further, one x ¾ =

k ¾ 1/m Õ 1

k ¾ 1/m+1
. (16)

can calculate the pressure and chemical potential of each
phase at a given density and temperature, and deter- In the original paper by Gay and Berne [14], as well
mine the coexistence regions between phases wherever as in Monte Carlo simulations by de Miguel et al.
necessary. [16 ± 18], and in the ® rst density functional theory of

We parametrized the single particle density as follows: GB systems by Velasco et al. [22], the following set of
parameters was used: k=3, k ¾ =5, m=2, n=1. We will

f (n)=
exp (LP2 (nzÃ ) )

P dn exp (LP2 (nzÃ ) )

, (8 ) use the same values in our calculation of the phase
diagram.

As proposed by Mo and Gubbins [27], one can split
the van der Waals type potential into the reference

r (r) =
exp (M cos(2pz/D ) )

P dz exp(M cos(2pz/D ) )

, (9 ) repulsive part and perturbation attractive part. For the
case of the GB potential, such an operation yields:

U0 ( 1, 2 ) =ugb ( 1, 2 ) +e( 1, 2 ), if r12 < rm (n1 , n2 )

0, if r12 > rm (n1 , n2 ) ,
where L (orientational ordering strength), M (translational
ordering strength), and D (smectic period) are parameters
characterizing ordering. For the smectic phase, all three (17)
parameters are non-zero; for the nematic, L is positive
and M is zero; for the isotropic phase, both L and M

DW att ( 1, 2 ) =Õ e( 1, 2 ), if r12 <rm (n1 , n2 )

ugb ( 1, 2 ) , if r12 > rm (n1 , n2 ) , (18)are zero.
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230 V. V. Ginzburg et al.

where rm (n1 , n2 )= (21/6 Õ 1)s0+s(1, 2) is the orienta- HGO system (no attractive interactions). The HGO ¯ uid
is very close to a system of hard ellipsoids which, astional-dependent position of the minimum; the function

DWatt (1, 2) is the one to be used in the free energy is known, does not exhibit smectic phases. We
expected, therefore, to ® nd only isotropic and nematicfunctional (3 ). Finally, the repulsive potential energy

(17) is replaced by a hard Gaussian overlap (HGO) phases up to rather high densities; had the smectic
phase been found, it would suggest that either the freepotential:
energy functional itself or the numerical algorithm was
inaccurate. The results (together with Monte Carlo

U0 ( 1, 2 ) =2, if r12<s ( 1, 2 )

0, if r12 > s( 1, 2 ) . (19) simulation data from ref. [17] ) are shown in ® gure 1,
giving pressure versus density and both nematic andIn the next section, we will present results of the
smectic order parameters versus density. It is easy to seephase diagram calculation and compare it with the
that the smectic order parameter is zero for all densities,simulation data.
so no smectic phase appears. The isotropic± nematic
transition occurs at r =0 3́25, in very good agreement4. Results and discussion
with the simulations.4.1. Calculation details

We calculated the free energy integral using a grid in
4.3. Gay± Berne phase diagrama ® ve-dimensional variable space with four meshpoints

In ® gure 2, the phase diagram for a Gay± Berne ¯ uidfor azimuthal angle, 20 for polar angle, and 16 mesh-
is shown; solid lines correspond to the DFT calculations,points for each spatial dimension (X, Y and Z ) . The
and squares correspond to the Monte Carlo results ofsimple trapezoidal rule was used for integration. The
de Miguel et al. [17]. It can be seen that the agreementparameter space consisted of two order parameters:
overall is rather satisfactory, although some discrepancythe nematic order parameter S = 7 P2 (cos (h) ) 8 , and the
exists in the location of the triple point I± V± S ( isotropicsmectic order parameter t= 7 cos(2pz/D ) 8 , as well as
liquid± vapour± smectic): in the DFT calculations, itthe smectic period D itself. For prolate ellipsoids,
appears to be at somewhat higher temperature and0 < S < 1, and 0 < t < 1 is always true with a correct
lower density than in Monte Carlo simulation. Theselection of the reference frame. We used 12 equally
agreement for another triple point, I± N± S (isotropic±spaced meshpoints in the interval [0, 1] for both order
nematic± smectic), is slightly better, because it is locatedparameters, and evaluated free energies for these values
at higher temperatures, where mean-® eld-type theoriesof S and t. Units of length and energy were selected so
like DFT usually accumulate fewer errors.that e0=1, s0=1; thus the units of pressure and density

It is important to point out the ambiguity about theare e0s Õ 3
0 and s Õ 3

0 , respectively. The smectic period D
smectic phase. According to de Miguel et al. [17], thewas assumed to be in the range [2 4́ to 3 9́] in reduced
smectic phase observed in a GB ¯ uid is hexatic B,length units (compare with the particle length of 3 0́ ),
not smectic A. The di� erence between the two is thatand at every point, minimization with respect to D
hexatic B has a long range bond orientational orderingwas performed. To ® nd the smectic state, the discrete
in the layer plane, while smectic A does not. Within theanalogue of the steepest descent method was used and
framework of our DFT , we were unable to characterizethe most ordered minimum was taken to represent the
this in-plane ordering, and thus may have introducedsmectic state.
additional energy costs associated with this omissionCalculations were performed on a Silicon Graphics
(which may explain why the DFT estimate for the I± V± SIndigo 2 R4400 workstation. After the preparation of
triple point temperature was too low).initial lookup tables for Mayer functions and potential

In ® gure 3, we show the pressure± density isotherm forenergy, we performed repeated loops over temperature
T =0 6́5 (DFT results compared with Monte Carloand density. At each temperature point, free energy
data) and the nematic and smectic order parameters forminimization was performed for 80 densities in the range
the same temperature. It can be seen on both curves[0 to 0 4́] in reduced density units. Coexistence densities
that at this temperature, there is one strongly ® rst orderand transition points were found using the Maxwell
isotropic± smectic transition with a broad coexistenceconstruction. The calculation was repeated for 30 tem-
region. This feature is typical of all points below I± N± Speratures in the range [0 3́ to 1 2́] in reduced energy
triple points where there is no stable nematic phase.units. Calculation of the whole phase diagram took

In ® gure 4, the pressure-density isotherm and orderapproximately two hours of cpu time.
parameters are shown for T =0 9́5, above the I± N± S
triple point. Now it can be seen that there are two4.2. Hard Gaussian overlap
transitions, a weak ® rst order isotropic± nematic transitionIn order to test the algorithm, we started with the

calculation of the athermal phase diagram for the and a second-order nematic± smectic transition. Such a
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231DFT GB phase diagram

Figure 1. Density functional theory (solid curves) and Monte Carlo results from ref. [17] (squares) for the HGO system: nematic
order parameter versus density. Inset: pressure versus density.

always smaller than our density precision. In the future,
it would be interesting to calculate the coe� cients of the
McMillan ± de Gennes functional for this GB system and
obtain an estimate for the size of the region where the
transition is ® rst order.

In ® gure 5, we show the pressure± temperature phase
diagram. It has, as expected, a liquid± vapour line at
small pressures that terminates at a critical point, and a
smectic± isotropic line that branches into smectic±
nematic and nematic± isotropic lines at higher pressures.
Both of these lines continue inde® nitely, since they
separate phases of di� erent symmetries.

5. ConclusionsFigure 2. Temperature± density phase diagram of the Gay±
Berne ¯ uid with k =3, k ¾ =5: density functional theory We applied the density functional theory to describe
(solid lines) and Monte Carlo results (squares). Phases: the phase diagram of a Gay± Berne ¯ uid (including the
I isotropic liquid. V vapour, N nematic, S smectic. smectic A phase). The results obtained are in reasonable

agreement with the results of Monte Carlo simulations.
The most signi® cant discrepancy (that in the temperaturepicture is clearly seen in the behaviour of the order
of the I± V± S triple point) can be explained by theparameters, where S jumps from 0 to 0 6́5 at r=0 3́16
possible di� erence between the hexatic B phase reportedand t jumps only from 0 to 0 2́5 at r =0 3́36; it is also
in Monte Carlo simulations and the smectic A phaseseen in the behaviour of the equation of state, where
assumed in the DFT calculation.there is a slight discontinuity at the ® rst transition, but

The speed and accuracy of the DFT method make itonly a small change in slope at the second.
an important tool in the investigation of the thermo-Although one would expect that close to the triple
dynamic properties of mesogenic materials. The reportedpoint I± N± S, the nematic± smectic transition must be
results can be easily extended to the case of particles® rst order (this follows both from general thermo-
with arbitrary shape and energy anisotropies, and thusdynamic principles and from de Gennes± McMillan
allow a simple and direct study of the dependence of thetheory [3,4] for this transition), we have not been able
stability of both nematic and smectic phases upon theseto observe this e� ect. This means that the coexistence

region for the ® rst-order nematic± smectic transition was two parameters. It should also be possible in the future
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232 V. V. Ginzburg et al.

Figure 3. Pressure± density isotherm (inset) and order parameters (orientational Ð solid line, translational Ð dashed line) for T =
0 6́5. Squares correspond to selected points from Monte Carlo simulations for pressure and nematic order parameter.

Figure 4. Same as ® gure 3, but for T =0 9́5.

to apply these results to predict phase behaviour of real where the functions rÅ 0 , rÅ 1 , rÅ 2 are:
anisotropic organic ¯ uids, although the necessity to
account for molecular ¯ exibility will still be a very rÅ 0 (r) = P ds w0 ( |s |)r(r+ R s) ; (A2)
signi® cant obstacle.

This work was sponsored by the NSF-MRG Grant
rÅ 1 (r) =s2

0sz P ds w1 ( |s |)r(r+ R s) ; (A3)DMR 92-02312.

Appendix A: Smoothed density function
rÅ 2 (r) = (s2

0sz)2 P ds w2 ( |s |)r (r+ R s) . (A4)The smoothed density function rÅ (r) can be written as
follows: The ẁeight functions’ w0 , w1 , w2 are:

rÅ =
2rÅ 0

1 Õ rÅ 1+ Ó [ ( 1 Õ rÅ 1 )2 Õ 4rÅ 0rÅ 2]1/2
, (A1) w0 (s)=

3

4p
H (s), (A5)
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233DFT GB phase diagram

Figure 5. Temperature± pressure phase diagram of the Gay± Berne ¯ uid. The inset shows an expanded view of the low-temperature
region to demonstrate better the liquid± vapour coexistence. Phases: I isotropic (above critical temperature) , L isotropic liquid,
V isotropic vapour, N nematic, S smectic.
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